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Abstract
Wannier functions of the one-dimensional Schrödinger equation with an elliptic
one-gap potential are explicitly constructed. Properties of these functions are
analytically and numerically investigated. In particular, we derive an expression
for the amplitude of the Wannier function in the origin, a power series expansion
valid in the vicinity of the origin and an asymptotic expansion characterizing
the decay of the Wannier function at large distances. Using these results, we
construct an approximate analytical expression of the Wannier function, which
is valid in the whole spatial domain and is in good agreement with numerical
results.

PACS numbers: 71.15.−m, 71.20.−b, 71.23.An

1. Introduction

The spectral analysis of Schrödinger operators with periodic potentials has been investigated
since the foundation of quantum mechanics. In spite of this, it still represents a non-exhausted
topic of continuing interest. On the one hand, it plays a crucial role in condensed matter
physics, where it provides the mathematical basis for the quantum theory of solids. On the
other, Schrödinger operators with periodic and quasi-periodic potentials play an important role
in the integration of the Kortweg–de Vries (KdV) equation. Eigenstates of these operators,
also called Bloch functions (BF), have been extensively studied over recent years by different
authors (see [1–3]). An expression of BF in terms of hyperelliptic θ-functions was given in
[4]. These studies were further developed in [5], where an algebro-geometric scheme for
constructing the solutions of non-linear equations was given in terms of the Baker–Akhiezer
function. This function is uniquely defined on the Riemann surface associated with the energy
spectrum and its properties are natural generalizations of the analytical properties of the BF of
finite-gap potentials.
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Besides BF, another set of functions that play an equally important role in condensed
matter physics are the Wannier functions (WF) [6]. These functions are related to BF by a
unitary transformation and form a complete set of localized orthonormal functions spanning a
Bloch band. The properties of these functions were first investigated by Kohn [7] in 1959 in
a classical paper, in which the asymptotic decay of WF was characterized for the case of centro-
symmetrical one-dimensional potentials. Since then, a number of studies have been devoted
to this topic, but we mention here the results of only some of them. The projection operator
technique was developed for the construction of WF which were studied in the n-dimensional
lattices [8, 9]. The localization problem for the WF was considered in a one-dimensional case
[10]. These functions were utilized with success in new practical methods for the calculation
of the electron energy of solids (see e.g. [11]) and in a number of modern calculation problems
such as photonic crystal circuits [12]. WF represent the ideal basis for constructing effective
Hamiltonians of quantum problems involving the spatial localizations induced by electric and
magnetic fields [13–16].

In spite of this, the properties of these functions are still not fully understood and, except
for the simplest cases, there are no models for which the analytical expression of the WF
can be explicitly given. On the other hand, recent results obtained in the field of completely
integrable systems open the possibility of investigating the analytical properties of the WF.
Quite interestingly, WF have not been considered in the field of finite-gap potentials so far.

The present paper represents the first contribution in this direction. In particular, we
consider WF of Schrödinger operators with one-gap potentials and use the well-developed
theory of elliptic functions to investigate their properties with sufficient completeness. As a
result, we derive (i) an exact value for the amplitude of the WF at the localization site, (ii) an
asymptotic expansion characterizing the decay of the WF at large distances and (iii) a power
series expansion valid in the vicinity of the localization site. Using results (ii) and (iii), we
construct an approximate analytical representation of the WF, which is valid in the whole
spatial domain. These results are shown to be in very good agreement with the WF obtained
by means of numerical methods.

This paper is organized as follows. In section 2, we discuss the basic properties of
the BF for one-gap potentials. In particular, we introduce the basic definitions, discuss the
basic properties of BF and derive the analytical expressions of their normalization constants.
Section 3 is devoted to a study of the WF. After recalling the basic definitions, we derive the
main results of the paper, namely points (i)–(iii) listed above. In section 4, we construct an
approximate analytical expression of the WF and compare the results of our theory with WF
obtained from the basic definition using numerical tools. Finally, in section 5, we summarize
the main results of the paper and briefly discuss future developments.

2. Properties of the Bloch functions of one-gap potentials

2.1. The Schrödinger equation with one-gap potentials

In this paper, we use the standard notations and facts of the theory of elliptic functions. In
particular, we use the well-known Weierstrass ℘-, σ- and ζ-functions. For the benefit of the
reader unfamiliar with elliptic functions, we recall that the Weierstrass elliptic ℘-function,
℘(u) ≡ ℘(u|2ω, 2ω′), and ζ-function, ζ(u) ≡ ζ(u|2ω, 2ω′), depend on the complex variable
u ∈ C and also on two periods, the real period 2ω and the pure imaginary period 2ω′. Both
functions are expressed in terms of the σ-function as

℘(u) = − ∂2

∂u2
log σ(u), ζ(u) = ∂

∂u
log σ(u),



Wannier functions of one-gap potential 9687

where the σ-function, in particular, can be defined as the infinite product

σ(u) = u
∏′

{(
1 − u

w

)
exp

[
z

w
+ 1

2

( z

w

)2
]}

,

where the apex on the product sign indicates that, in taking all the possible values of
w = 2nω + 2mω′ with n, m integers, the combination n = m = 0 must be excluded. The
Weierstrass ℘-function is even and double-periodic (elliptic):

℘(u + 2ω) = ℘(u + 2ω′) = ℘(ω),

whereas the ζ-function admits the following periodicity properties:

ζ(u + 2ω) = ζ(u) + 2η, ζ(u + 2ω′) = ζ(u) + 2η′, η = ζ(ω), η′ = ζ(ω′).

In the following, we adopt the classical notation, according to which, except for ω′ and η′

(where the prime denotes the imaginary half-period and the value of the ζ-function at the
imaginary half-period, respectively), the ‘prime’ appearing in other letters will always denote
the derivative with respect to the argument.

For our considerations, it is convenient to fix the following form of the potential:

U(x) = −2℘(u), u = ix + ω, x ∈ R,

U(x + nT ) = U(x), n ∈ N,
(2.1)

where T = −2iω′ is the period of the lattice. Notice that T is real and U(x) = 2℘(ix + ω) is
a smooth periodic real function for all values of ω and ω′. Indeed,

U(x) = 2℘(−ix + ω) = 2℘(−ix − ω + 2ω) = 2℘(ix + ω) = U(x),

where eveness and periodicity properties of the ℘-function were used.
The time-independent Schrödinger equation associated with the potential (2.1) is

∂2
x�(x; E) + (E − U(x))�(x; E) = 0. (2.2)

As is well known (see e.g. [17] and references therein), this equation admits a spectrum that
has a gap structure and eigenfunctions �(x; E) satisfying the Bloch condition

�(x − T ; E) = e−ik(E)T �(x; E), (2.3)

where E is the energy given by

E = ℘(v), v = α + ω′, α ∈ R, (2.4)

and k(E) is the quasi-momentum given by

k(v) = ζ(v) − η′

ω′ v, v = α + ω′, α ∈ R. (2.5)

In the following, the half-periods ω and ω′ will be considered as free parameters of the theory.
Eigenfunctions of type (2.3) are called Bloch functions. Notice that the dependence of the
quasi-momentum on energy (and vice versa) arises from elimination of the parameter α from
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equations (2.4) and (2.5). The BF can be written in explicit form as

�(u; v) = C(v)
σ(v − u)

σ(v)σ(u)
exp{uζ(α)}, (2.6)

or, alternatively, as

�(u, v) = D(v)
√

℘(u) − ℘(v) exp

{
℘′(v)

2

∫ x du

℘(u) − ℘(v)

}
, (2.7)

where C(v), D(v) are normalization constants that will be computed explicitly in terms of
elliptic functions. In the following, we shall use both representations for the BF. Notice that
the BF considered as a function of k is periodic in the reciprocal space with a period

2ω̃ = iπ

ω′ .

BF has the following periodicity properties:

�(u + 2nω; v) = exp{2nωk(v)}�(u; v), k(v) = ζ(v) − v
η

ω
, (2.8)

�(u + 2n′ω′; v) = exp{2n′ω′k′(v)}�(u; v), k′(v) = ζ(v) − v
η′

ω′ . (2.9)

2.2. Normalization of the Bloch function of one-gap potentials

Since normalization of the BF plays an important role in the construction of the WF (see the
next section), we shall show how to compute the normalization constant, although this question
has been considered in chapter VIII of [2].

We normalize the BF according to

2π〈|�(x, E)|2〉 = 1, (2.10)

where

〈f(x)〉 = lim
L→∞

1

L

∫ L/2

−L/2
f(x) dx.

The following proposition is valid.

Proposition 2.1. Normalized Bloch functions of elliptic one-gap potentials are of the form

�(x; α) = − i

(2π)1/2

[
−℘(v) − η′

ω′

]−1/2
σ(v − u)

σ(v)σ(u)
exp{vη + (u − ω)ζ(v)}, (2.11)

where u = ix + ω, x ∈ R; v = α + ω′, α ∈ R.

Proof. Let us denote the normalized BF as

�(u; v) = C(v)�(u; v),

where �(u; v) is the non-normalized BF given by

�(u; v) = σ(v − u)

σ(v)σ(u)
e(u−ω)ζ(v),
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and C(v) is the normalization constant defined by equation (2.10):

2π
|C(v)|2

2ω′

∫ ω+2ω′

ω

|�(u; v)|2 du = 1.

The complex conjugated (non-normalized) BF is

�(u; v) = σ(v − u)

σ(v)σ(u)
e−(u−ω)ζ(v) = σ(v − u)

σ(v)σ(u)
e−(u−ω)ζ(v )

= −σ(v − 2ω′ + u − 2ω)

σ(v − 2ω′)
σ(u − 2ω)e(u−ω)ζ(v−2ω′)

= σ(v + u)

σ(v)σ(u)
e−(v−ω′)2η−(u−ω)ζ(v),

where the following elementary equalities were used:

σ(z) = σ(z), ζ(z) = ζ(z), (u − ω) = −(u − ω),

u = −u + 2ω, v = v − 2ω′,

ζ(v − 2ω′) = ζ(v) − 2η′,

σ(v − 2ω′) = −σ(v) exp(−(v − ω′)2η′),

σ(u − 2ω) = −σ(u) exp(−(u − ω)2η).

By multiplying the above expressions of �(u; v) and �(u; v), we get

|�(u; v)|2 = σ(v − u)σ(v + u)

σ2(v)σ2(u)
e−(v−ω′)2η = [℘(u) − ℘(v)] e(v−ω′)2η,

where, in the last step, we have used the well-known formula

σ(v − u)σ(v + u)

σ2(v)σ2(u)
= ℘(u) − ℘(v).

The normalization condition can be then written in the form

1 = 2π
|C(v)|2

2ω′

∫ ω+2ω′

ω

[℘(u) − ℘(v)] e(v−ω′)2η du

= 2π|C(v)|2
[
− η′

ω′ − ℘(v)

]
e−(v−ω′)2η,

since

1

2ω′

∫ ω+2ω′

ω

℘(u) du = 1

2ω′ [ζ(ω) − ζ(ω + 2ω′)] = − η′

ω′ .

Thus we have obtained, for the normalization constant, the expression

C(v) = eiθ

(2π)1/2

[
− η′

ω′ − ℘(v)

]−1/2

e(v−ω′)η, (2.12)
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with an arbitrary phase factor exp(iθ), θ ∈ R. In the following, we fix this factor as

exp(iθ) = exp

(
ω′η − iπ

2

)
. �	

Next, we shall show that this choice of the phase leads to the WF that is both real and
symmeteric about x = 0. Moreover, this choice of the phase is unique (see section 6 of [7]).

The normalized BF �(u; v) satisfy a number of useful properties under the action of
symmetry operations. For centro-symmetrical potentials, the transformation x → −x of the
lattice corresponds to a transformation in the Jacobian u → û = −u + 2ω, and the following
propositions can be proved.

Proposition 2.2.

�(û; v) = �(−u + 2ω; v) = �(u; v).

Proof.

�(û; v) = �(−u + 2ω; v)

= i(2π)−1/2

[
−℘(v) − η′

ω′

]−1/2
σ(v + u − 2ω)

σ(v)σ(u − 2ω)
exp[vη − (u − ω)ζ(v)]

= i(2π)−1/2

[
−℘(v) − η′

ω′

]−1/2
σ(v + u)

σ(v)σ(u)
exp[−vη − (u − ω)ζ(v)] = �(u; v). �	

Similarly, the transformation α → −α corresponds to v → v̂ = −v + 2ω′, and the
following proposition is valid.

Proposition 2.3.

�(u; v̂) = �(u; −v + 2ω′) = �(u; v).

Proof.

�(u; v̂) = �(u; −v + 2ω′)

= −i(2π)−1/2

[
−℘(v) − η′

ω′

]−1/2
σ(−v − u + 2ω′)
σ(−v + 2ω′)σ(u)

× exp[(−v + 2ω′)η + (u − ω)ζ(v − 2ω′)]

= −i(2π)−1/2

[
−℘(v) − η′

ω′

]−1/2
σ(v + u)

σ(v)σ(u)
exp[−vη − (u − ω)ζ(v)]

= �(u; v). �	
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The above propositions can be used to study the elementary properties of the BF,
�(x; k) ≡ �(u(x); v(k)), where u(x) = ix + ω and v(k) is the inverse of the function
k(v) = ζ(v) − (η′/ω′)v. In this regard, note that

x(û) = −x(u), k(v̂) = −k(v).

The following two properties are easily proved.

Property 1. �(−x; k) = �(x; k).

Proof.

�(−x; k) = �(û, v) = �(u; v) = �(x; k). �	
Property 2. �(x; −k) = �(x; k).

Proof.

�(x; −k) = �(u; v̂) = �(u; v) = �(x; k). �	
3. Analytical properties of the Wannier function of elliptic one-gap potentials

3.1. Definition and basic properties

In 1937, Wannier [6] introduced a complete set of functions for an electron in a lattice structure.
The WF, Wn(x), are defined as

Wn(x) =
(

T

2π

)1/2 ∫ π/T

−π/T

�n(x; k) dk, (3.1)

where the integral is made on the Brillouin zone. WF for the Schrödinger operator with
periodic potential U(x), U(x−mT ), m ∈ Z, are localized linear combinations of all the Bloch
eigenstates of a given nth spectral band. One can easily prove that if the BF is normalized
according to equation (2.10), then the WF is normalized on the full line,∫ ∞

−∞
|Wn(x)|2 dx = 1.

Using the translation operator, one then constructs a countable set of WF: W(l)
n (x) :=

Wn(x − lT ), l ∈ Z which is complete and forms an orthonormal basis∫ ∞

−∞
W

(l)

n (x)W
(l′)
n′ (x) dx = δnn′δll′ , l ∈ Z.

The inverse transformation allows us to express a BF in terms of WF as

�n(x; k) =
(

T

2π

)1/2 ∞∑
l=−∞

W(l)
n (x) eilak. (3.2)

In the following, we shall omit the band index n since we deal only with one band. Properties
of WF of one-dimensional periodic potentials were studied by Kohn [7], where he proved that
for every band there exists one and only one WF that satisfies simultaneously the following



9692 E D Belokolos et al

three properties: (i) W(x) = W(x); (ii) W(−x) = ±W(x); (iii) W(x) = O(exp(−h|x|)), where
h > 0. In the following, we investigate the analytical properties of the WF for the one-gap
potential in equation (2.1). In this case, the WF is given by the formula

W(x) =
(

T

2π

)1/2 ∫ π/T

−π/T

�(x; k) dk

=
(

T

2π

)1/2 (∫ 0

−π/T

+
∫ π/T

0

)
�(x; k) dk

=
(

T

2π

)1/2 ∫ π/T

0
(�(x; k) + �(x; −k)) dk

=
(

T

2π

)1/2

2Re
∫ π/T

0
�(x; k) dk

= Re

{
−i

√−2iω′

π

∫ ω+ω′

ω′

√
dk(v)

dv

σ(v − u)

σ(v)σ(u)
evη+(u−ω)ζ(v) dv

}
. (3.3)

Using the properties of the BF, �(x; k), the following basic properties of the WF can be proved.

Proposition 3.1. W(x) = W(x).

Proof.

W(x) =
(

2T

π

)1/2

Re
∫ π/T

0
�(x; k) dk =

(
2T

π

)1/2

Re
∫ π/T

0
�(x; k) dk = W(x). �	

Proposition 3.2. W(−x) = W(x).

Proof.

W(−x) =
(

2T

π

)1/2

Re
∫ π/T

0
�(−x; k) dk =

(
2T

π

)1/2

Re
∫ π/T

0
�(x; k) dk

=
(

2T

π

)1/2

Re
∫ π/T

0
�(x; k) dk = W(x). �	

3.2. Power series expansion of the WF at x = 0

We shall construct in this section the power series expansion of the WF of one-gap potential.

Theorem 3.3. The WF of the lower energy band for the one-gap potential admits the following
power series representation:

W(x) =
∞∑

p=0

(−1)p

(2p)!
W2px2p, (3.4)
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where the coefficients W2p of the expansion (3.4) are given by the formula

W2p =
p∑

l=0

Mlqp,l. (3.5)

Here

Ml =
√

2i

π

√
ω′e3 + η′

l∑
j=0

(2j − 1)!!l!

2j(j!)2(l − j)!
e
j

3(e2 − e3)
l−j

× F

(
−1

2
, j + 1

2
; j + 1; ω′(e3 − e2)

ω′e3 + η′

)
, (3.6)

where F(a, b; c; z) is the standard hypergeometric function, e2, e3 are branch points of the
elliptic curve and qp,l are coefficients of polynomials in ℘(v)

Qp(℘(v)) =
p∑

l=0

qp,l℘
l(v)

defined by the recurrence

Qp(℘(v)) =
p−1∑
m=0

(
2p

2m − 2

)
φm−p−1Qm(℘(v)) (3.7)

with

φ0 = 2e1 + ℘(v), φp = 2℘(2p)(ω).

The first few coefficients of the expansion (3.4) are

W0 = M0,

W2 = M1 + 2e1M0,

W4 = M2 + 4e1M1 + (4e2
1 + 2℘′′(ω))M0, (3.8)

W6 = M3 + 6e1M2 + (14℘′′(ω) + 12e2
1)M1 + (2℘(IV )(ω) + 28℘′′(ω)e1 + 8e3

1)M0.

Proof. We have

W(x) =
(

2T

π

)1/2

Re
∫ π/T

0
�(x; k) dk. (3.9)

Because the BF �(x; k) is even in x, we can write it in the form of the Taylor expansion

�(u, v) =
∞∑

p=0

(−1)p

(2p)!
�2p(v)x2p, (3.10)

where

�2p(v) =
[

d2p

du2p
�(u, v)

]
u=ω

, p = 1, . . . .



9694 E D Belokolos et al

If we substitute the Taylor expansion (3.10) into (3.9), we obtain the expansion (3.4) with the
following coefficients:

W2p =
(

2T

π

)1/2

Re
∫ π/T

0
�2p(v) dk. (3.11)

Using the Schrödinger equation, we obtain easily, for the �2p(v), a recurrent relation

�2p(v) =
p−1∑
l=0

(
2p

2l − 2

)
φp−l−1�2l(v),

φ0 = 2e1 + ℘(v), φp = 2℘(2p)(ω).

The form of this relation leads to the conclusion that

�2p(v) = Qp(℘(v))�0(v),

where

�0(v) = �(ω; v) = 1√
2π

√
℘(v) − e1

℘(v) + η′/ω′ (3.12)

and Qp(℘(v)) are polynomials of the pth order in ℘(v), given by

Qp(℘(v)) =
p∑

l=0

qp,l℘
l(v).

As for �2p(v), the polynomials Qp(℘(v)) satisfy the following recurrent relation:

Qp(℘(v)) =
p−1∑
m=0

(
2p

2m − 2

)
φm−p−1Qm(℘(v)) (3.13)

with

φ0 = 2e1 + ℘(v), φp = 2℘(2p)(ω).

In particular, the first few polynomials Qp(℘(v)) are

Q1(℘(v)) = ℘(v) + 2e1,

Q2(℘(v)) = ℘(v)2 + 4e1℘(v) + 2℘′′(ω) + 4e2
1, (3.14)

Q3(℘(v)) = ℘(v)3 + 6e1℘(v)2 + (14℘′′(ω) + 12e2
1)℘(v) + 2℘(IV )(ω) + 28e1℘

′′(ω) + 8e3
1.

Next, we calculate the integral expressions of the coefficients W2p. We show that the
following formula is valid:

Ml = −2

(
ω′

iπ

)1/2 ∫ ω′

0
℘(v)l

(
℘(v) + η′

ω′

)
�(ω; v) dv

=
(

2T

π

)1/2 ∫ ω′

0
℘(v)l

1√
2π

√
℘(v) − e1

℘(v) + (η′/ω′)

(
−℘(v) − η′

ω′

)
dv

= T 1/2

π

∫ ω′

0
℘(v)l

√
℘(v) − e1

√
℘(v) + η′

ω′ dv.



Wannier functions of one-gap potential 9695

After the substitution ℘(v) = s, the computation is reduced to the derivation of the complete
elliptic integral

Ml = −
√−iω′

π

∫ e2

e3

sl

√
s + (η′/ω′)

(s − e2)(s − e3)
ds. (3.15)

By introducing a new variable

t = s − e3

e2 − e3
,

the integral Ml acquires the form

Ml = −
√−iω′

π

√
e2 − e3

∫ 1

0
((e2 − e3)t − e3)

l

√
1 − k̃2t

t(1 − t)
dt, (3.16)

where

k̃ =
√

ω′(e3 − e2)

ω′e3 + η′ (3.17)

is the Jacobi modulus of the elliptic curve

Y 2 = (X − e2)(X − e3)

(
X + η′

ω′

)
. (3.18)

Using the integral representation of the hypergeometric function (see e.g. [18])

F(a, b; c; z) = �(c)

�(b)�(c − b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − tz)a
dt, (3.19)

we obtain the required expression

Ml =
√

2i

π

√
ω′e3 + η′

l∑
j=0

(2j − 1)!!l!

2j(j!)2(l − j)!
e
j

3(e2 − e3)
l−j

× F

(
−1

2
, j + 1

2
; j + 1; k̃2

)
. (3.20)

�	
It is worth noting that the coefficient W0 gives an exact value of the amplitude of WF at

the localization site x = 0,

W0 =
√

2i

2

√
ω′e3 + η′ F

(
−1

2
,

1

2
; 1; k̃2

)
. (3.21)

This amplitude can also be written in the alternative form

W0 =
√

2i

π

√
ω′e3 + η′E(̃k), (3.22)

where E(̃k) is the complete integral of the second kind depending on k̃. Also note that, by
using the relations(

z
d

dz
+ b

)
= bF(a, b + 1; c; z),[

(1 − z)
d

dz
+ c − a − b

]
F(a, b; c; z) = (c − a)(c − b)

c
F(a, b; c + 1; z),
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one can express all the hyperegeometric functions F(− 1
2 , j + 1

2 ; j + 1; k̃2) in (3.20) in terms
of the derivatives of F(− 1

2 , 1
2 ; 1; k̃2) with respect to k̃2, and therefore the whole expression can

be written in terms of the complete integral E(̃k) and its derivatives.
We remark that the quantities ℘(2j)(ω), j = 1, . . . , can be computed in a recurrent way,

examples of the first of them being [18]

℘′′(ω) = 3!

(
e2

1 − 1

22 · 3
g2

)
,

℘(IV )(ω) = 5!

(
e3

1 − 3

22 · 5
g2e1 − 1

2 · 5
g3

)
,

℘(VI )(ω) = 7!

(
e4

1 − 1

5
g2e

2
1 − 1

7
g3e1 + 1

24 · 5 · 7
g2

2

)
.

3.3. Asymptotic expansion of the WF

In this section, we obtain the asymptotic expression for the WF at x → +∞ by the steepest
descents method. This method (see e.g. [19]) permits us to compute the asymptotic expression
of integrals of the type

F(x) =
∫

γ

f(z) exp{xS(z)} dz,

where γ is a contour in the complex plane, and the functions f(z) and S(z) are holomorphic
in the vicinity of γ . When a saddle point z0, defined by the equation

d

dz
S(z0) = 0,

does not coincide with the edges of the contour, the asymptotic formula of the integral F(x)

reads

F(x) =
√

− 2π

xd2S(z0)/dz2
exp{xS(z0)}[f(z0) + O(x−1)].

In our case, we must use a non-standard variant of the steepest descents method, since the
exponential in the integrand will have the form xS(z) only at |x| → +∞ and f(z0) = 0.

Proposition 3.4. At x → ∞, the WF of the lower energy band for the one-gap potential has
the following asymptotic expression:

W(x) � Re

{√−2iω′

π

(
e1 + η′

ω′

)1/2
σ(v − u)

σ(v)σ(u)
e(u−ω)ζ(v)

[
i

2℘′(v)

]1/4
�(3/4)

x3/4

}
, (3.23)

where v is a solution of the equation

℘(v) = − η′

ω′ or k′(v) = 0, (3.24)
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such that the complex number ω′k(v) = ω′(ζ(v) − (η′/ω′)v) has a negative real part. This
means that

W(x) � exp(−h|x|)|x|−3/4, |x| → ∞,

where h = |k(v)| and v is defined by the equation k′(v) = 0.

Proof. We use the expression of the WF for the first energy band [e3, e2] given in
equation (3.3). Since

σ(v − u)

σ(v)σ(u)
= − σ(u − v)

σ(ω − v)

σ(ω)

σ(u)

σ(ω − v)

σ(v)σ(ω)

= σ(v − ω)

σ(v)σ(ω)
exp

{∫ u

ω

[ζ(s − v) − ζ(s)] ds

}

= [℘(v) − e1]1/2 exp

{
−vη +

∫ u

ω

[ζ(s − v) − ζ(s)] ds

}
,

we have that equation (3.3) can be rewritten as

W(x) = Re

{√−2iω′

π

∫ ω+ω′

ω′
[e1 − ℘(v)]1/2

√
dk(v)

dv

× exp

{∫ u

ω

[ζ(s − v) − ζ(s) + ζ(v)] ds

}
dv

}
. (3.25)

When x → +∞, we can calculate the integral in equation (3.25) by the steepest descents
method. In this regard, we remark that the argument of the exponential, as a function of v, has
saddle points which are defined by the equation

d

dv

∫ u

ω

[ζ(s − v) − ζ(s) + ζ(v)] ds = 0,

or, in other words, by the equation

℘(v) = −ζ(u − v) − ζ(ω − v)

u − ω
.

At x → +∞, the last equation attains the form (3.24). Since ℘(v) = ℘(v), we have that if v

is a saddle point then v is also a saddle point. On the other hand, ℘(v) is an elliptic function of
the second order, so it takes every value twice in the fundamental domain, implying that there
are two saddle points, say v1, v2, in the fundamental domain. The sum of the values v1, v2

must be a period of the lattice, which in our case means that v1 + v2 = 2(ω + ω′). It is not
difficult to show that

v1 = ω + ω′ + iβ, v2 = ω + ω′ − iβ, β ∈ R,

i.e. the two saddle pointsv1, v2 are situated in the spectral gap. The periodicity of theWeierstrass
function ℘(z) in the complex plane give rise to a countable set V of saddle points,

V = {v1 + 2n1ω
′, v2 + 2n2ω

′ : n1, n2 ∈ Z}.
In order to build the proper asymptotic expression for the Wannier function W(x), we must
select from this set a special saddle point which we denote by v0. In the neighbourhood of v0,
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we have √
dk(v)

dv
� [−℘′(v0)]

1/2(v − v0)
1/2,∫ u

ω

[ζ(s − v) − ζ(s) + ζ(v)] ds �
∫ u

ω

[ζ(s − v0) − ζ(s) + ζ(v0)] ds

+ 1

2
(v − v0)

2
∫ u

ω

[ζ′′(s − v0) + ζ′′(v0)] ds =
∫ u

ω

[ζ(s − v0) − ζ(s) + ζ(v0)] ds

− (u − ω)
1

2

[
℘′(v0) + ℘(u − v0) − ℘(ω − v0)

u − ω

]
(v − v0)

2

�
∫ u

ω

[ζ(s − v0) − ζ(s) + ζ(v0)] ds − (u − ω)
1

2
℘′(v0)(v − v0)

2.

Substituting the last two expressions into the integral representation of the WF in (3.25), we
obtain

W0(x) � Re

{√−2iω′

π

(
e1 + η′

ω′

)1/2

exp

{∫ u

ω

[ζ(s − v0) − ζ(s) + ζ(v0)] ds

}

×
∫

C0

dv [−℘′(v0)]
1/2(v − v0)

1/2 exp

{
−1

2
(u − ω)℘′(v0)(v − v0)

2

}}

= Re

{√−2iω′

π

(
e1 + η′

ω′

)1/2
σ(v0 − u)

σ(v0)σ(u)
exp{(u − ω)ζ(v0)}

×
∫

C0

dr [−℘′(v0)]
1/2r1/2 exp

{
−1

2
(u − ω)℘′(v0)r

2

} }
,

where C0 is a contour passing through the saddle point v0. The integral in the last expression
can be calculated as

I0 =
∫

C0

dr [−℘′(v0)]
1/2r1/2 exp

{
−1

2
(u − ω)℘′(v0)r

2

}

=
[

i

2℘′(v0)

]1/4 1

x3/4

∫ ∞

0
e−t t−1/4 dt =

[
i

2℘′(v0)

]1/4
� (3/4)

x3/4
.

Notice that, since ℘′(v0) = −2[℘(v0) − e1]1/2[℘(v0) − e2]1/2[℘(v0) − e3]1/2 and e3 � e2 �
℘(v0) � e1, we have that ℘′(v0) = −i|℘′(v0)|.

For the function W0(x), we finally obtain

W0(x) � Re

{√−2iω′

π

(
e1 + η′

ω′

)1/2 [
i

2℘′(v0)

]1/4
�(3/4)

x3/4

× exp

{∫ u

ω

[ζ(s − v0) − ζ(s) + ζ(v0)] ds

}}

= Re

{√−2iω′

π

(
e1 + η′

ω′

)1/2
σ(v0 − u)

σ(v0)σ(u)
e(u−ω)ζ(v0)

[
i

2℘′(v0)

]1/4
�(3/4)

x3/4

}
.
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The asymptotic behaviour of the function W0(x) at x → +∞ is defined by the factor

f(u, v0) = σ(v0 − u)

σ(u)
exp[(u − ω)ζ(v0)],

which satisfies the relation

f(u + 2nω′, v0) = f(u, v0) exp

[
2nω′

(
ζ(v0) − η′

ω′ v0

)]
= f(u, v0) exp[2nω′k(v0)].

The saddle point v0 must be chosen in such a manner that the complex number ω′k(v0) has
a negative real part. From previous considerations, it follows that the point v0 is also a
saddle point. The asymptotic behaviour of the function W0(x) at x → −∞ is defined by this
saddle point, which corresponds to the complex number ω′k(v0) = ω′(ζ(v0) − (η′/ω′)v0) with
a positive real part. �	

It is appropriate to make here some remarks.
According to the theorem,

W(x) � exp(−|x||k(α0)|)|x|−3/4, |x| → ∞.

It is easy to understand such an asymptotic behaviour of the WF at |x| → ∞ if we take into
account that

W(x) � Re

{∫
C

(k − k0)
βeikx

}
� 2 sin(βπ) �(1 + β)x−(1+β)e−Im k0x,

where k0 is a branching point of the energy E(k), and that, due to a normalization constant of
the wave function,

�(k) � (k − k0)
−1/4,

the equality β = −1/4 is valid. As far as we know, this asymptotic law was mentioned for the
first time in [10].

It is of interest to note also that the equation

℘(v) + η′

ω′ = 0

has, obviously, the following solution:

v = ±
∫ ∞

−(η′/ω′)

dx√
4x3 − g2x − g3

.

The more general problem to solve the equation

℘(v, ω, ω′) = c(ω, ω′),

is a well-known mathematical problem in the theory of elliptic functions. A solution of the
problem in terms of Eisenstein series is presented in [20].

In the above theorem, we have obtained results for the WF of a lower energy band. Results
for the WF of a higher band,

W(x) = Re

{
−i

√−2iω′

π

∫ ω̃

ω

√
dk(v)

dv

σ(v − u)

σ(v)σ(u)
evη+(u−ω)ζ(v) dv

}
,

k(ω̃) = ζ(ω̃) − η′

ω′ ω̃ = π

T
,

(3.26)

are similar to the ones presented above and, as a result, we omit appropriate considerations.
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Let us now discuss two limiting cases. The limit τ = ω′/ω → 0 corresponds to the free
electron case or the empty lattice case. In this limit, the energy gap is zero, e1 = e2, there are
no saddle points and, as a result, we have the well-known free electron WF,

W(x) = T 1/2

πx
sin

(πx

T

)
.

The limit τ = ω′/ω → i∞ corresponds to the case of tightly bound electrons. In this case,
the width of the lower energy band is zero, e2 = e3, and the appropriate wave function is as
follows:

�(x) =
(α

2

)1/2 1

cosh αx
, E0 = −α2,

where E0 is the binding energy. The wave functions of higher energy bands are of the form

�(x, k) = 1√
2π

√
k2 + α2

(|k| + iα tanh(αx)) e±ikx, E = k2.

In section 4, we shall compare our analytical results with numerical ones.

4. Approximate analytical expressions of WF and the numerical results

The results of the previous section permit us to construct the following approximate expression
of the WF for one-gap potentials:

W(x) = W0 + W2x
2 + W4x

4 + W6x
6 for |x| � x0

= Re

{√−2iω′

π

(
e1 + η′

ω′

)1/2
σ(v − u)

σ(v)σ(u)

× exp{(u − ω)ζ(v)}
[

i

2℘′(v)

]1/4
�(3/4)

x3/4

}
for |x| > x0, (4.1)

where u = ix + ω, v = v+ + ω′, the coefficients W0, . . . , W6 are given by formulae (3.8) and
the point x0 is chosen so as to satisfy the normalization condition ‖W(x)‖2 = 1.

To check the validity of this expression, we shall compare the WF obtained from equation
(4.1) with the one obtained directly from definition (3.1) by numerical methods, using the
expression of the normalized BF in proposition 2.1. In figure 1, we show the band structure
obtained for the one-gap potential with parameter values e1 = 2, e2 = −0.5, e3 = −1.5,
while in figure 2, we depict the WF associated to the lower band. We see that the agreement
between the analytical approximation and direct numerical calculations is excellent both in
the proximity of the origin and far away from it, these being the regions of validity of the
corresponding expansions. In the intermediate region, however, some discrepancy appears. It
is possible that, for some set of potential parameters, the validity regions of the two expansions
(near the origin and far from the origin) can overlap at some point x0 so that it is possible to
join them to the single smooth analytical approximation (4.1), which stay close to the exact
numerical curve in the whole spatial domain. The existence of a point of this kind is possible
only for one-gap potentials. Such a good matching of two expansions is shown in figure 3,
where the WF of the lower band for a potential with another set of parameters is depicted.
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Figure 1. Energy bands of the one-gap potential with parameters of the elliptic curve e1 = 2, e2 =
−0.5, e3 = −1.5.
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Figure 2. The WF associated to the lower band of the one-gap potential. The branching points of
the elliptic curve are fixed as in figure 1. The amplitude of the function in the origin is W(0) = 0.93.
The solid curve denotes the exact expression obtained from numerical calculations, the broken line
corresponds to a part of the WF approximated by the asymptotic expansion, and the dotted line
denotes the part obtained from the power expansion near the origin. The arrow shows the point
where the two different analytical expansions are joined.

By comparing figure 3 with figure 2, we see that the discrepancy in the intermediate region is
smaller for WF which are more localized. This can be understood from the fact that a faster
decay of the function (see figures 4 and 5) allows the asymptotic expansion to work up to
points that are very close to the origin. In figures 4 and 5, we show the asymptotic decay of the
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Figure 3. Same as in figure 2 but for a different set of parameters. The branching points of
the elliptic curve are e1 =6, e2 = − 2.0, e3 = − 4.0. The value of the function in the origin
is W(0)=1.22302. The solid curve denotes the exact expression obtained from numerical
calculations, the broken line corresponds to a part of the WF approximated by the asymptotic
expansion, and the dotted line denotes the part obtained from the power expansion near the origin.
The arrow shows the point where the two different analytical expansions are joined.
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Figure 4. Asymptotic decay of the WF in figure 2 in semi-log scale. The solid curve represents
our analytical approximation, while the dotted line is obtained from direct numerical calculations
of the WF.

WF depicted in figures 2 and 3, respectively, from which we see that a stronger localization
of the function corresponds to a faster asymptotic decay. The linear decay observed in the
semi-log plots of these figures is fully consistent with the exponential decay of the WF of
one-gap elliptic potentials predicted by our analysis.
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Figure 5. Asymptotic decay of the WF in figure 3 in semi-log scale. The solid curve represents
our analytical approximation, while the dotted line is obtained from direct numerical calculations
of the WF.

5. Conclusions

In this paper, we have investigated properties of the WF of the Schrödinger operator with one-
gap potentials. As a result, we have derived the exact value for the amplitude of the functions
in the origin, as well as an asymptotic expansion characterizing the decay of the function at
large distances and a power series valid in the vicinity of the origin. Using these expansions,
we have constructed approximate analytical expressions of the WF and have shown that they
are in good agreement with the ones obtained from numerical results.

We remark that the approach developed here can be generalized to the case of finite-gap
potentials of a more complicated type, like elliptic finite-gap potentials and general finite-
gap potentials. We shall discuss these problems in a future publication and, in particular, in
the forthcoming Proceedings of the Workshop ‘Nonlinear waves: theory and experiment III’,
Gallipoli, 25 June–3 July 2004.
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